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Technology Trends in Numerically 
and Data Intensive Computing "

Numerically intensive Trends!

Hardware: Exascale challenges and solutions "

Data intensive Trends "

Software: Cloud challenges and solutions "



Trends for HPC Scientific 
Visualization and Analysis "

Relentless increase in data sizes "
3 orders of magnitude every 
ten years"

"
Adapting to changing 
infrastructure"

Shared memory, clusters, 
threading, cloud"

"
Advancing the fundamentals "

Improved end-to-end workflow 
and cognitive understanding "
How about the user 
experience?"



Responding to the 
Trends: ParaView"

�  An open-source, scalable, multi-platform 
visualization application "
"
�  Support for distributed computation 

models to process large data sets "
�  Billions of AMR cells, Scaling test 

over 1 Trillion cells"

�  Used by academic, government and 
commercial institutions worldwide "
�  Downloaded ~100K times per year"
�  Developed by Kitware, LANL, SNL…"

�  Originally designed to support a post 
processing workflow"
�  Simulations save data to storage and 

scientist interactive visualizes results "

Bill Daughton, LANL"

Swiss National 
Supercomputing 

Centre"

http://paraview.org"



Numerically Intensive Trends: "
Exascale Computing – The Vision"

Achieve order 1018 operations per second and order 1018 bytes of storage"

Address the next generation of scientific, engineering, and large-data problems"

1,000X capabilities of today's computers with a similar size and power footprint "

"

"

"

"

"

"

"

Productive system "
•  Usable by a wide variety of scientists and 

engineers "
•  “Easier” to develop software & management 

of the system "
 "

Based on marketable technology "
•  Not a “one off” system - Scalable, sustainable 

technology"
•  Deployed in early 2020s "

Set the US on a new trajectory of progress – towards a broad spectrum of 
computing capabilities over the next decade"

 "
"



Potential Exascale System Architecture"
With a cap of $200 M and 20 MW "

"
Feature" 2013 "

Titan Computer"
2023" Difference    

2013 & 2023 "
System Peak" 27 Pflops/s" 1 Eflop/s" O(100)"

Power" 8.3 MW " 20MW " 2.5x"
System Memory" 0.7 PB " 64 PB " O(100)"

Node 
Performance" 1.5 TF/s" 15 TF/s" O(10)"

Node Memory 
BW" 0.2 TB/s " 4 TB/s" O(10)"

Interconnect BW " 0.008 TB/s " 0.4TB/s" O(100)"
Number of 

Nodes" 18688" 100000" O(10)"

Total 
concurrency" 50M" O(billion)" O(100)"

Power is very costly: 1 MW = ~ Million dollars"
Without intervention on track to 200MW for Exascale"
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Access Delay (Log Scale) "

Storage Food
*Relative*

Access*Time

L1*cache Food*in*the*
mouth

*Fractions*of*
a*second

L2*cache
*Get*food*
from*the*
plate

*1*second

L3*cache
*Get*food*
from*the*
table

*Few*
seconds

DRAM
*Get*food*
from*the*
kitchen

*Few*
minutes

FLASH

*Get*food*
from*the*

neighborhood*
store

*Few*hours

HDD *Get*food*
from*Mars!

*3E5*years

Diagram and Table from “Taming the Power Hungry Data Center”, Fusion I/O."



Implication: The traditional post-
processing approach is becoming 

unworkable at extreme scale "
▪  Temporal simulation snapshots are saved at 

longer intervals"
—  Full checkpoints are costly - less temporal 

data available for analysis "

▪  Rate of improvement of rotating storage is not 
keeping pace with compute"
—  Power, cost and reliability are becoming 

significant issues"
"

"
"



Implication: Transition to an in situ focused 
approach"

"▪  In situ saves reduced-sized data products during 
simulation run"
•  Benefits: "

—  Save disk space "
—  Save time in post-processing analysis "
—  Produce higher fidelity results "

▪  Automatic visualization and analysis during the 
simulation run "
—  Prioritized by scientist’s importance metrics "

▪  Identify specific analysis questions "
"

▪  Help manage cognitive and storage resource budget "



Implication: Significant in situ data reduction"

Algorithm" Reduction"
Data parallelism" Handle large datasets "

Make reduction possible "

Multi-resolution " Make focused exploration 
possible "

Visualization and analysis 
operators (isosurface)"

A dimension reduction "

Statistical sampling " 1-2 orders of magnitude"

Compression" 1 order of magnitude"

Feature extraction" 2 orders of magnitude"



Sampling "
"▪  Random sampling 

provides a data 
representation that 
is unbiased for 
statistical 
estimators, e.g., 
mean and others"

▪  Since the sampling 
algorithm is in situ: 
accuracy 
metric(simulation 
data, sampled 
representation)"

Red is 0.19% sample data, black is original simulation data "

Plotting"

Feature Extraction: Halo Finding "

. The red, green, and blue curves are 0.19%, 1.6%, and 
12.5% samples. . The black curve is the original data."
 Calculate the halo mass function for different sample 

sizes of 2563 particles"



Example: Visual Downsampling"

Cosmology visualization in ParaView"





In Situ Compression with Quantified Accuracy "

▪  In situ compression of simulation 
data"
•  Use JPEG 2000 to compress 

data"
•  Quantify the maximum/L-infinity 

norm) data quality for 
scientific analysis"

▪  Measure the maximum point 
error "
•  Guarantee accuracy to x 

decimal places"
•  Accuracy Metric "
   (Simulation data –    
Compressed representation) "

▪  User can trade read I/O time vs. 
data accuracy in a quantifiable 
manner"
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Isovalues on Compressed Simulation Data with 
Bounding Error - (32 bits, 3200x2400x42, 1.4 GB) "

0.25 bits"
10.8 MB"

1.0 bits"
43.3 MB"

0.5 bits"
21.6 MB"

2.0 bits"
86.5 MB"



Implication: Automated Algorithms "
Adaptive focus based on selected scientific metrics 

"

▪  Create adaptive analysis-based grid 
•  Histogram at each grid element "

—  Across all axises (spatial, value, multivariate)"
▪  Use for spatial, temporal selection  

•  Cameras, storage, feature identification 

timestepn timestepn+1 
difference 
histogram 

- =





Sampling Using Analysis Driven Refinement (ADR)"

."

•  Recursive metric-
based refinement "

•  Multidimensional"
"

Sampling in Time" Sampling in Space "



Data-Intensive Technology 

The NIST Definition "
"

▪  A model for enabling ubiquitous, convenient, on-demand network 
access to: "

 "
•  a shared pool of configurable computing parallel resources "

—  (e.g., networks, servers, storage, applications, and services)"
"
•  rapidly provisioned and released with minimal interaction "

▪  http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf"

Data Intensive Trends:"
Cloud Computing"



The NIST Definition of Cloud Computing"
Essential Characteristics "

▪  On-demand self-service "

▪  Resource pooling / Multi-tenancy (multiple jobs)"
—  Virtualization"

▪  Rapid elasticity"
—  Scale rapidly commensurate with demand"

▪  Measured service / Cost model "
—  Resource usage is automatically monitored, controlled, and 

reported, providing transparency "
"



The NIST Definition of Cloud Computing"
Essential Characteristics "

▪  Levels of cloud service "
•  Infrastructure "
•  Application "

▪  Private cloud is an option… "



Axis" Sub-axis " Numerically Intensive " Data Intensive"

Hardware" Nodes and 
Interconnect "

High performance and 
power"

Lower 
performance and 

power"
Storage" Separate, independent " Integrated "

SW" Synchronization" Tightly coupled " Loosely coupled "

Reliability " Checkpoint restart" Replication"

Workload" Number of Users" Single per node " Multiple per node"

Data " Dynamic, 
heterogeneous 

(unstructured grid) "

Static, 
homogeneous 
(text, images)"

Algorithms" Global" Distributed"

User Interface " Complex Application " Simple Web"

Data Model" Files" Database "

Workflow" Scheduling" Batch" Interactive "

Analysis " Offline post-processing" Online"

I/O" Bulk parallel writes" Streaming writes"



Implications of Cloud Computing on 
HPC Visualization and Analysis "

"Multi-billion dollar market"
•  Leverage, collaborate and support "

"
Virtual machine (VM) encapsulates a simulation 

with defined inputs/outputs "
"

•  Cloud infrastructure services require VM "
–  Provenance - full lineage of data/process/environment"
–  Resilience – follows from provenance"
–  Data compression – VM and input deck instead of data"
–  To do: Reduced VM size and VM composition "



Implications of Cloud Computing 
on HPC Visualization and Analysis "

""
Data-oriented applications"

As an approach to massive data "
"

▪  Beyond Map-Reduce "
—  Environments – Spark "
—  Scalable databases – Impala, MongoDB"
—  Data analytics products "

User/task-centric applications "
▪ Cloud enables mobile/web "
▪  Focus on usability and simplicity "



Inspiration: Image Database Approach"
Cinema "

Challenge "
In situ is a batch process"

 Concern that exploratory aspect of analysis will be lost  "

Idea"
Store many images that sample the visualization parameter space"
In less than the space needed for a single scientific data dump"

Ex: Cameras, operations, parameters "

   Create an image database from in situ analysis "
Post-processing exploration of image database"

Mega" Giga" Tera" Peta" Exa"
10^6" 10^9" 10^12" 10^15" 10^18"
Image"
speed"

Storage & 
network 
speed"

Operations "
speed"

Operations"
speed"

"

Operations"
speed"

"



Cinema Workflow"

3"
Use Case 1 – 

Traditional Interactive 
Visualization "

      " Use Case 2 –  
Image Database 

Exploration"

Image Database "Image Database "

Setup/Data 
Reduction               

In Situ Script "
1" Simulation 

Code !"

Simulation Code"
Run with In Situ 

Script"

2"

3"



Setup /Data Reduction Phase"

▪  Interactively create or 
reuse a visualization 
pipeline  "
•  Contains all operations "
•  Specifies information  

needed to generate 
images for the 
database"

"

Setup/Data 
Reduction               

In Situ Script "
1" Simulation 

Code !"

Simulation Code"
Run with In Situ 

Script"



Setup / Data Reduction Phase"

Set camera and 
operator parameters to 
visualize"
"

Θ
φ



Simulation Code "
Run with In Situ 

Script"
2" Image 

Database "Image Database "

Example Script!
For each (Time Step) "
!For each (Operator) "
! !For each (Value) "

! ! !For each (Camera Position)"
! ! !!Generate Image "

Image Database "



Use Case 1 – Traditional interactive exploration "

In all videos in this presentation: "
Processing, combining and showing images from the image database "
No raw scientific data is read, no geometry is created during viewing "



Use Case 2 - Image database exploration"

Traditional key-value pair queries "
Keys: Camera (phi, theta), time, operator parameters "



Use Case 2 – Image database exploration "



Image-based approach reduces analysis 
exploration bias "

▪  Traditional post-processing approach "
•  Generate visualization and analysis result upon user 

request"
•  User wait time is extremely variable "

—  Rendering (seconds) "
—  File system accesses (minutes)"

•  Creates inherent bias in what is explored "
—  For example: little significant interactive temporal 

analysis "
▪  For an image-based approach "

•  All “operations” take the same amount of time"
—  Reduces bias of what get explored "



Use Case 3 – Creation of new visualizations "

•  Use real time image compositing to build new 
pipelines"

•  Image representation: Color & depth buffer "
•  Multitude of combinations/visualizations possible"



Use Case 3 – Creation of new visualizations "

•  Scientists can quickly create “arbitrary” pipelines to 
answer their analysis questions "



Use Case  2 & 3 – Content based image search"

time x phi x theta

{
    "dimensions": [500, 500],
    "counts": {
        "+" : 61606,
        "A+" : 8192,
        "AB+" : 1718,
        "ABCDEFG+" : 42,
        "ABCDEFGJ+" : 9,
        "ABCDEFJG+" : 31,
        "ABCDEG+" : 1,
        "ABCDEJFG+" : 102,
        "ABCDEJG+" : 11,
        "ABCDFG+" : 4,
        ...
    }
}

query.json
{
    "dimensions": [500, 500],
    "counts": {
        "+" : 61606,
        "A+" : 8192,
        "AB+" : 1718,
        "ABCDEFG+" : 42,
        "ABCDEFGJ+" : 9,
        "ABCDEFJG+" : 31,
        "ABCDEG+" : 1,
        "ABCDEJFG+" : 102,
        "ABCDEJG+" : 11,
        "ABCDFG+" : 4,
        ...
    }
}

query.json
{
    "dimensions": [500, 500],
    "counts": {
        "+" : 61606,
        "A+" : 8192,
        "AB+" : 1718,
        "ABCDEFG+" : 42,
        "ABCDEFGJ+" : 9,
        "ABCDEFJG+" : 31,
        "ABCDEG+" : 1,
        "ABCDEJFG+" : 102,
        "ABCDEJG+" : 11,
        "ABCDFG+" : 4,
        ...
    }
}

query.json
{
    "dimensions": [500, 500],
    "counts": {
        "+" : 61606,
        "A+" : 8192,
        "AB+" : 1718,
        "ABCDEFG+" : 42,
        "ABCDEFGJ+" : 9,
        "ABCDEFJG+" : 31,
        "ABCDEG+" : 1,
        "ABCDEJFG+" : 102,
        "ABCDEJG+" : 11,
        "ABCDFG+" : 4,
        ...
    }
}

query.json
{
    "dimensions": [500, 500],
    "counts": {
        "+" : 61606,
        "A+" : 8192,
        "AB+" : 1718,
        "ABCDEFG+" : 42,
        "ABCDEFGJ+" : 9,
        "ABCDEFJG+" : 31,
        "ABCDEG+" : 1,
        "ABCDEJFG+" : 102,
        "ABCDEJG+" : 11,
        "ABCDFG+" : 4,
        ...
    }
}

query.json

%

∑

•  What image in the database contains the “best” view of a 
collection of visualization objects?"

•  Each image/pixel contains a list of the order/visibility of 
the objects for each view "

•  Pixel coverage is calculate for all views and objects "

Percent of image covered "
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Use Case 2 & 3 – Content-based image search "

+900 lines later

%

2000

1000

∑



▪  Databases "
—  Plasma Code /Intel Ray tracer, MPAS/Cinema in-situ,  HACC Cosmology data "

▪  Code examples "
—  Coupled MPAS/Cinema to create new databases "

http:/datascience.lanl.gov/Cinema.html"
"



Weak Scaling of XRage Simulation and "
In Situ Analysis "
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Disk usage reduction "
Full XRage data files versus in situ "
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Summary: Orders of magnitude data saving with Cinema 
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Conclusions"
▪  Next steps:  http://datascience.lanl.gov"

▪  In situ workflows are required for exascale"
•  Benefits over traditional post-processing approach "
•  Sampling is key "

▪  Reduced simulation data approach "
•  Error quantification is possible "
"

▪  Image database approach "
•  Offering unique interactive exploration options "

—  Database search "
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